扫码访问手机版
0 人学习
扫码访问手机版
课程目录
学员 1、01 - The Course Overview
03:42学员 2、02 - Downloading and Installing Python
03:03学员 3、03 - Using the Command Line and the Interactive Shell
03:30学员 4、04 - Installing Packages with pip
02:55学员 5、05 - Finding Packages in the Python Package Index
03:08学员 6、06 - Creating an Empty Package
04:10学员 7、07 - Adding Modules to the Package
04:37学员 8、08 - Importing One of the Package's Modules from Another
05:01学员 9、09 - Adding Data Files to the Package
02:33学员 10、10 - PEP 8 and Writing Readable Code
06:20学员 11、11 - Using Version Control
06:00学员 12、12 - Using venv to Create a Stable and Isolated Work Area
03:26学员 13、13 - Getting the Most Out of docstrings Part 1 – PEP 257 and Sphinx
06:23学员 14、14 - Getting the Most Out of docstrings Part 2 – doctest
02:51学员 15、15 - Making a Package Executable via python – m
04:15学员 16、16 - Handling Command-line Arguments with argparse
05:20学员 17、17 - Text-mode Interactivity
03:38学员 18、18 - Executing Other Programs
05:04学员 19、19 - Using Shell Scripts or Batch Files to Launch Programs
01:53学员 20、20 - Using concurrent.futures
09:57学员 21、21 - Using Multiprocessing
08:37学员 22、22 - Understanding Why Asynchronous I_O Isn't Like Parallel Processing
05:51学员 23、23 - Using the asyncio Event Loop and Coroutine Scheduler
05:26学员 24、24 - Futures
06:04学员 25、25 - Making Asynchronous Tasks Interoperate
05:51学员 26、26 - Communicating across the Network
03:15学员 27、27 - Using Function Decorators
00:00学员 28、28 - Using Function Annotations
04:55学员 29、29 - Using Class Decorators
04:28学员 30、30 - Using Metaclasses
04:55学员 31、31 - Using Context Managers
04:41学员 32、32 - Using Descriptors
05:37学员 33、33 - Understanding the Principles of Unit Testing
03:32学员 34、34 - Using unittest
05:36学员 35、35 - Using unittest.mock
05:39学员 36、36 - Using unittest's Test Discovery
03:56学员 37、37 - Using Nose for Unified Test Discovery and Reporting
03:59学员 38、38 - The Course Overview
03:55学员 39、39 - Brief Introduction to Data Mining
04:37学员 40、40 - Data Mining Basic Concepts and Applications
07:06学员 41、41 - Why Python
03:31学员 42、42 - Basics of Python
05:55学员 43、43 - Installing IPython
02:09学员 44、44 - Installing the Numpy Library
04:32学员 45、45 - Installing the pandas Library
05:32学员 46、46 - Installing Matplotlib
02:42学员 47、47 - Installing scikit-learn
02:37学员 48、48 - Data Cleaning
05:31学员 49、49 - Data Preprocessing Techniques
05:08学员 50、50 - Linear Regression Basic Model Approach
08:24学员 51、51 - Evaluating Regression Models
05:31学员 52、52 - Basic Regression Model Implementation to Predict House Prices
09:20学员 53、53 - Regression Model Implementation to Predict Television Show Viewers
09:46学员 54、54 - Logistic Regression
04:01学员 55、55 - K – Nearest Neighbors Classifier
05:51学员 56、56 - Support Vector Machine
05:41学员 57、57 - Logistic Regression Model Implementation
10:45学员 58、58 - K – Nearest Neighbor Classifier Implementation
10:44学员 59、59 - The Course Overview
03:52学员 60、60 - What Is Deep Learning
04:08学员 61、61 - Open Source Libraries for Deep Learning
04:31学员 62、62 - Deep Learning Hello World! Classifying the MNIST Data
07:57学员 63、63 - Introduction to Backpropagation
05:23学员 64、64 - Understanding Deep Learning with Theano
05:04学员 65、65 - Optimizing a Simple Model in Pure Theano
07:54学员 66、66 - Keras Behind the Scenes
05:24学员 67、67 - Fully Connected or Dense Layers
04:46学员 68、68 - Convolutional and Pooling Layers
06:40学员 69、69 - Large Scale Datasets, ImageNet, and Very Deep Neural Networks
05:17学员 70、70 - Loading Pre-trained Models with Theano
05:16学员 71、71 - Reusing Pre-trained Models in New Applications
07:22学员 72、72 - Theano for Loops – the scan Module
05:18学员 73、73 - Recurrent Layers
06:28学员 74、74 - Recurrent Versus Convolutional Layers
03:43学员 75、75 - Recurrent Networks –Training a Sentiment Analysis Model for Text
06:50学员 76、76 - Bonus Challenge – Automatic Image Captioning
04:41学员 77、77 - Captioning TensorFlow – Google's Machine Learning Library
05:15学员 78、78 - The Course Overview
02:59学员 79、79 - Installing TensorFlow
05:34学员 80、80 - Simple Computations
05:31学员 81、81 - Logistic Regression Model Building
06:58学员 82、82 - Logistic Regression Training
04:53学员 83、83 - Basic Neural Nets
05:16学员 84、84 - Single Hidden Layer Model
05:06学员 85、85 - Single Hidden Layer Explained
04:32学员 86、86 - Multiple Hidden Layer Model
05:22学员 87、87 - Multiple Hidden Layer Results
04:43学员 88、88 - Convolutional Layer Motivation
05:03学员 89、89 - Convolutional Layer Application
06:56学员 90、90 - Pooling Layer Motivation
03:59学员 91、91 - Pooling Layer Application
04:18学员 92、92 - Deep CNN
06:29学员 93、93 - Deeper CNN
04:08学员 94、94 - Wrapping Up Deep CNN
04:55学员 95、95 - Introducing Recurrent Neural Networks
09:03学员 96、96 - skflow
09:19学员 97、97 - RNNs in skflow
04:04学员 98、98 - Research Evaluation
06:55学员 99、99 - The Future of TensorFlow
04:19