作为排名靠前的最受欢迎和增长最快的编程语言之一,Python 是一种多用途、高级别、面向对象、交互式、解释型和对用户非常友好的编程语言,拥有卓越的可读性和极高的自由度。而为了能利用多核多线程的的优势,同时又要保证线程之间数据完整性和状态同步,Python 官方的、最广泛使用的解释器——CPython 往往会采取最简单的加锁的方式——全局解释器锁(GIL)。 然而,GIL 的设计有时会显得笨拙低效,并对语言的并发性带来严重限制,但是此时由于内置库和第三方库已经对 GIL 形成了巨大的依赖,想改变 GIL 反而变得困难了。不过实际上,Python 生态系统中存在诸多工具可以解决这一问题。 提纲: 1、全局解释器锁 (GIL) 2、多进程 (multiprocessing) 3、多线程 (multithreading) 4、异步 (async) 5、分布式计算(以 Dask 为例) 今天要跟大家分享的是 Python 全局解释器锁与并发。我会先介绍一下全局解释器锁 (GIL))的概念和影响;接下来会借助几个案例分析来展示 Python 通过多进程、多线程和异步、分布式计算来达成并发的几种方式;最后会介绍一套分布式计算工具——Dask。 全局解释器锁 (GIL)GIL 的概念用简单的一句话来解释,就是「任一时刻,无论线程多少,单一 CPython 解释器只能执行一条字节码」。这个定义需要注意的点包括: 第一,GIL 不属于 Python 语言定义,而是 CPython 解释器实现的一部分; 第二,其他 Python 解释器不一定有 GIL。例如 Jython (JVM) 和 IronPython (CLR) 没有 GIL,而 PyPy 有 GIL; 第三,GIL 并不是 Python 的专利。其他语言也有 GIL,尤其是动态语言,如 Ruby MRI。
说到 GIL,就不得不提 Python 线程模型,它的运行方式如下: CPython 使用 OS 原生线程,由 OS 负责调度; 每个解释器进程有唯一的主线程和用户定义的任意数量子线程; GIL 是字节码层面上的互斥锁。刚刚定义中提到的 PyThread_type_lock 就是 OS 互斥锁的别名 每个解释器进程有且仅有一把锁; 当解释器启动时,主线程即获取 GIL; 一个线程持有 GIL 并执行字节码时,其他线程处于阻塞状态。
GIL 被加到 CPython 解释器中,是有其原因的。在 1992 年,单 CPU 是合理的假设!多核则是 2005-2006 年前后才普及,此外,GIL 的优势还包括: 简化解释器实现; 优化单进程性能; 简化 C 扩展库的整合。
Python 有两种多任务模型:一种叫做协作式 (cooperative) 多任务;另一种叫抢占式 (preemptive) 多任务。 协作式多任务: 抢占式多任务: 接下来可以进展到去除 GIL。这是很多 Python 用户十分期待的事情,但是短期内是不太可能实现的,它的难点包括: 第一,技术问题 Guido 要求不降低单线程执行效率 兼容现有引用计数与垃圾回收机制 兼容现有 C 扩展
第二,在社区友好性上,不显著提高开发难度。 尽管如此,我们也可以看到一些现有去除 GIL 的实验性的方案: Gilectomy:尝试将 GIL 换成若干小锁,然而这种方案严重降低了 Python 的性能。首先,它会使得多线程竞争同一把锁。其次,它在将 GIL 换成若干小锁后,将严重降低缓存的命中率。 PyPy:实验性分支支持软件事务内存 (STM),不过 STM 目前还是一个相对少见的机制,可解决当前很多问题,但是实现非常困难——尤其在像 Python 这种高度动态的语言当中。 Starlark:这种方案并非去掉 GIL,而是一门兼容部分 Python 语法,并发执行字节码的新语言。它目前用于 Google Bazel 编译系统,我个人认为这是一个非常有意思的未来趋势。
既然现在去除 GIL 的方案都有很多弊端,并且短期内我们也无法让 GIL 从 Python 中被去除,我们最常见的解决方案就是避开 GIL,主要通过两种手段实现:
第一种是多解释器进程并发 (multiprocessing) 第二种是避免执行 Python 字节码,常见的方法有:Cython ctypes、部分 NumPy 函数释放 GIL、Numba JIT「nogil=True」,以及 TensorFlow/PyTorch JIT。
多进程(multiprocessing)和多线程(multithreading)进入案例分析前,先介绍几个相关的概念。 首先介绍一下并行与并发的区别: 并发(concurrency):是指多个操作可以在重叠的时间段内进行,例如在第一个时间片内,线程 A 执行,线程 B 阻塞;第二个时间片内,线程 B 等待 I/O,而线程 A 执行;第三个时间片内,线程 A 执行,而线程 B 还在等待 I/O。 并行(parallelism):是指多个操作在同一时间点上进行。无论在哪个时间片里,两个线程可能同时处于某一状态。例如在第一个时间片内,线程 A 执行,线程 B 执行;第二个时间片内,线程 A 等待 I/O,线程 B 也在等待 I/O ;第三个时间片内,线程 A 执行,而线程 B 也 执行。
多线程意味着我们在使用并发这种线程模型,而多进程则是在使用并行这一线程模型,其各有利弊: 接下来我们将通过一个案例来尝试 Python 并发的几种不同解决方案的案例: 这就讲到多进程(multiprocessing)这一概念,它的适用场景包括: CPU 占用率高 子进程间通信简单 相关变量和函数可被序列化,但占用内存较小
如果想知道更多内容,大家可参见文档: https://docs.python.org/3/library/multiprocessing.html https://docs.python.org/3/library/concurrent.futures.html
接下来进入到多进程解决方案的案例讲解: 之后要讲到多线程 (multithreading),多线程的使用场景包括: 如要了解更多内容,可以参见文档: https://docs.python.org/3/library/threading.html https://docs.python.org/3/library/queue.html
再看一下 Python 多线程编程难点,下面这些难点有些针对 Python,有些是所有多线程共通的难题: 第一,CPython 的线程切换可能在任意字节码之间发生,而 Python 指令不具有原子性 第二,每次访问受限资源都需获取锁 第三,锁不具有强制性,即使忘记获取锁,代码也可能运行 第四,竞争状态难以复制
我们看一个相关的案例——多线程计数器:
异步 (async)接着讲一下异步 (async)。Python 中的异步是一种在单一线程内使用生成器实现的协程,比线程能更高效地组织非阻塞式任务。协程的切换由 Python 解释器内完成。当然,其他语言也有异步编程,比如 Go 语言的 goroutine,以及 Nginx 用 C 实现了异步编程。 关于更多异步编程的内容,大家可参见文档: https://docs.python.org/3/library/asyncio-task.html
看案例之前,先比较一下异步与线程。与线程相比,异步的优劣势分别为: 优势: 简单的多任务模型 明确的协程切换点 系统开销远小于 OS 原生线程
劣势: 有相对独立的生态系统 与其他并发模型混用较难 API 仍未稳定
下面我们看异步的案例: 分布式计算(以 Dask 为例) 最后讲一下分布式计算,本堂课中的分布式计算以 Dask 为例。 Dask 是一种基于运算图的动态任务调度器,可使用动态调度器扩展 NumPy 和 Pandas。左边这个图就是 Dask 的运算图。 与另一种分布式计算方法 Spark 比较,Dask 的特性非常鲜明: 它是一个纯 Python 实现 无需遵循 map-reduce 范式 细粒调度带来较低的延迟
在 Dask 中,我们更关注的是 Distributed。它是 Dask 在异构集群上的扩展。它的网络结构遵循客户 – 调度器 – 工作节点这样的形式,因此要求所有节点拥有相同的 Python 运行环境。 接下来我们看一个简单的案例:
以上就是Python并发与并行的基本内容。
|