查看: 1876|回复: 1

PyTorch中 tensor.detach() 和 tensor.data 的区别 ———————...

[复制链接]

665

主题

1234

帖子

6683

积分

xdtech

Rank: 5Rank: 5

积分
6683
发表于 2020-5-13 08:38:45 | 显示全部楼层 |阅读模式
PyTorch0.4中,.data 仍保留,但建议使用 .detach(), 区别在于 .data 返回和 x 的相同数据 tensor, 但不会加入到x的计算历史里,且require s_grad = False, 这样有些时候是不安全的, 因为 x.data 不能被 autograd 追踪求微分 。 .detach() 返回相同数据的 tensor ,且 requires_grad=False ,但能通过 in-place 操作报告给 autograd 在进行反向传播的时候.
举例:
tensor.data

>>> a = torch.tensor([1,2,3.], requires_grad =True)
>>> out = a.sigmoid()
>>> c = out.data
>>> c.zero_()
tensor([ 0., 0., 0.])

>>> out                   #  out的数值被c.zero_()修改
tensor([ 0., 0., 0.])

>>> out.sum().backward()  #  反向传播
>>> a.grad                #  这个结果很严重的错误,因为out已经改变了
tensor([ 0., 0., 0.])
1
2
3
4
5
6
7
8
9
10
11
12
tensor.detach()

>>> a = torch.tensor([1,2,3.], requires_grad =True)
>>> out = a.sigmoid()
>>> c = out.detach()
>>> c.zero_()
tensor([ 0., 0., 0.])

>>> out                   #  out的值被c.zero_()修改 !!
tensor([ 0., 0., 0.])

>>> out.sum().backward()  #  需要原来out得值,但是已经被c.zero_()覆盖了,结果报错
RuntimeError: one of the variables needed for gradient
computation has been modified by an


回复

使用道具 举报

665

主题

1234

帖子

6683

积分

xdtech

Rank: 5Rank: 5

积分
6683
 楼主| 发表于 2020-5-13 08:39:23 | 显示全部楼层
个人评价,csdn这篇文字,几乎如同放屁。

讲了半天,也没看到.data与.detach的区别

所以,原始链接就不贴了
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

快速回复 返回顶部 返回列表