查看: 2181|回复: 0

Learning Spatial-Temporal Regularized Correlation Filters for Visual Tracking

[复制链接]

166

主题

616

帖子

1万

积分

xdtech

Rank: 5Rank: 5

积分
11792
发表于 2019-3-24 10:56:45 | 显示全部楼层 |阅读模式
简介

此算法研究了在不损失效率的情况下,利用空间正则化和大型训练集形式的优点的方法。一方面,SRDCF 的高复杂度主要来源于对多幅图像的训练形式。通过去除约束条件,单图像样本上的 SRDCF 可以通过 ADMM 有效地解决。由于 SRDCF 的凸性,ADMM 也能保证收敛到全局最优。另一方面,在 SRDCF 算法中,将空间正则化集成到多幅图像的训练形式中,实现了 DCF 学习与模型更新的耦合,提高了追踪准确率。在在线被动攻击 ( PA ) 学习 [ 6] 的启发下,作者将时间正则化方法引入到单图像 SRDCF 中,得到了时空正则化相关滤波器 ( STRCF )。STRCF 是多训练图像上 SRDCF 形式的合理近似,也可用于同时进行 DCF 学习和模型更新。此外,ADMM 算法也可以直接用于求解 STRCF。因此,本文提出的 STRCF 将空间正则化和时间正则化结合到 DCF 中,可以用来加速 SRDCF。此外,作为在线 PA 算法的扩展,STRCF 还可以在外观大幅变化的情况下实现比 SRDCF 更鲁棒的外观建模。与 SRDCF 相比,引入时间正则化后的 STRCF 对遮挡具有更强的鲁棒性,同时能够很好地适应较大的外观变化。

创新点

通过将空间和时间正则化纳入 DCF 框架,提出了 STRCF 模型。基于在线 PA 的 STRCF 不仅可以合理地逼近多幅训练图像上的 SRDCF 形式,而且在较大的外观变化情况下比 SRDCF 具有更强的鲁棒性。
为高效求解 STRCF,开发了一种 ADMM 算法,其中每个子问题都有封闭形式的解。并且本文提出的算法可以在非常少的迭代中经验地收敛。
本文提出的 STRCF 具有人工设计的特征,可以实时运行,相比 SRDCF 在准确率上有了显著的提升。
主要框架

相关滤波,HOG,CN特征
---------------------


回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

快速回复 返回顶部 返回列表