近日,Github 一位开发者 danaugrs 开源了一个新项目——Huskarl,一个专注研究和快速原型的深度强化学习框架。
此框架基于 TensorFlow 2.0 构建,使用了 tf.keras API,保证了其简洁性和可读性。Huskarl 可以使多环境的并行计算变得很容易,这将对加速策略学习算法(比如 A2C 和 PPO)非常有用。此外,Huskarl 还可以与 OpenAI Gym 环境无缝结合,并将计划支持多代理环境和 Unity3D 环境。
OpenAI Gym:2016 年 OpenAI 发布的一个可以开发、对比强化学习算法的工具包,提供了各种环境、模拟任务等,任何人都可以在上面训练自己的算法。
Unity3D:一个全面整合的专业游戏引擎,由 Unity Technologies 开发的一款可以让玩家轻松创建三维视频游戏、实时三维动画等类型互动内容的多平台综合型游戏开发工具。
目前,Huskarl 已经支持了 DQN(Deep Q-Learning Network)、Multi-step DQN、Double DQN、A2C(Advantage Actor-Critic)等算法,还有 DDPG(Deep Deterministic Policy Gradient)、PPO(Proximal Policy Optimization)、Curiosity-Driven Exploration 等算法在计划中。
|