查看: 2035|回复: 2

imbalanced库的安装

[复制链接]

166

主题

616

帖子

1万

积分

xdtech

Rank: 5Rank: 5

积分
11584
发表于 2018-12-30 20:34:26 | 显示全部楼层 |阅读模式
本帖最后由 Happy清子 于 2018-12-30 20:35 编辑

imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-class imbalance. It is compatible with scikit-learn and is part of scikit-learn-contrib projects.


Installation Dependencies
imbalanced-learn is tested to work under Python 2.7 and Python 3.6, and 3.7. The dependency requirements are based on the last scikit-learn release:
  • scipy(>=0.13.3)
  • numpy(>=1.8.2)
  • scikit-learn(>=0.20)
  • keras 2 (optional)
  • tensorflow (optional)
Additionally, to run the examples, you need matplotlib(>=2.0.0) and pandas(>=0.22).
imbalanced-learn 0.4 is the last version to support Python 2.7

Installation
imbalanced-learn is currently available on the PyPi’s repository and you can install it via pip:
pip install -U imbalanced-learn
The package is release also in Anaconda Cloud platform:
conda install -c conda-forge imbalanced-learn
If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from GitHub and install all dependencies:
git clone https://github.com/scikit-learn-contrib/imbalanced-learn.gitcd imbalanced-learnpip install .

Or install using pip and GitHub:
pip install -U git+https://github.com/scikit-learn-contrib/imbalanced-learn.git

Testing
After installation, you can use pytest to run the test suite:
make coverage

Development
The development of this scikit-learn-contrib is in line with the one of the scikit-learn community. Therefore, you can refer to their Development Guide.

About
If you use imbalanced-learn in a scientific publication, we would appreciate citations to the following paper:
@article{JMLR:v18:16-365,
author  = {Guillaume  Lema{{\^i}}tre and Fernando Nogueira and Christos K. Aridas},
title   = {Imbalanced-learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning},
journal = {Journal of Machine Learning Research},
year    = {2017},
volume  = {18},
number  = {17},
pages   = {1-5},
url     = {http://jmlr.org/papers/v18/16-365}}




回复

使用道具 举报

665

主题

1234

帖子

6670

积分

xdtech

Rank: 5Rank: 5

积分
6670
发表于 2019-1-10 21:16:30 | 显示全部楼层
这个库
先在用的多
回复

使用道具 举报

665

主题

1234

帖子

6670

积分

xdtech

Rank: 5Rank: 5

积分
6670
发表于 2019-1-10 21:16:54 | 显示全部楼层
希望平台里面,
预装库,要越来越多地
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

快速回复 返回顶部 返回列表