扫码访问手机版
0 人学习
扫码访问手机版
课程目录
学员 1 - 1 - Course Introduction (10-58)
10:58学员 1 - 2 - What is Machine Learning (18-28)
18:28学员 1 - 3 - Applications of Machine Learning (18-56)
18:57学员 1 - 4 - Components of Machine Learning (11-45)
11:42学员 1 - 5 - Machine Learning and Other Fields (10-21)
10:21学员 2 - 1 -Perceptron Hypothesis Set (15-42)
15:42学员 2 - 2 -Perceptron Learning Algorithm (PLA) (19-46)
19:46学员 2 - 3 - Guarantee of PLA (12-37)
12:37学员 2 - 4 - Non-Separable Data (12-55)
12:55学员 3 - 1 - Learning with Different Output Space (17-26)
17:26学员 3 - 2 - Learning with Different Data Label (18-12)
18:12学员 3 - 3 - Learning with Different Protocol (11-09)
11:09学员 3 - 4 - Learning with Different Input Space (14-13)
14:13学员 4 - 1 - Learning is Impossible- (13-32)
13:12学员 4 - 2 - Probability to the Rescue (11-33)
11:32学员 4 - 3 - Connection to Learning (16-46)
16:46学员 4 - 4 -Connection to real learning
18:05学员 5 - 1 - Recap and Preview (13-44)
13:44学员 5 - 2 - Effective Number of Lines (15-26)
15:26学员 5 - 3 - Effective Number of Hypotheses (16-17)
16:17学员 5 - 4 - Break Point (07-44)
07:44学员 6 - 1 - Restriction of Break Point (14-18)
14:18学员 6 - 2 - Bounding Function- Basic Cases (06-56)
06:56学员 6 - 3 - Bounding Function- Inductive Cases (14-47)
14:46学员 6 - 4 - A Pictorial Proof (16-01)
16:01学员 7 - 1 - Definition of VC Dimension (13-10)
13:10学员 7 - 2 - VC Dimension of Perceptrons (13-27)
13:27学员 7 - 3 - Physical Intuition of VC Dimension (6-11)
06:10学员 7 - 4 - Interpreting VC Dimension (17-13)
17:13学员 8 - 1 - Noise and Probabilistic Target (17-01)
17:01