扫码访问手机版
1 人学习
扫码访问手机版
课程目录
学员 1、Lecture I - Recent Advances, Frontiers and Future of Deep RL
01:04:29学员 2、Lecture 1 - Motivation + Overview + Exact Solution Methods
56:30学员 3、Lecture 2 - Sampling-based Approximations and Function Fitting
49:50学员 4、Lecture 3 - Deep Q-Networks
01:03:06学员 5、Lecture 4A - Policy Gradients
53:55学员 6、Lecture 4B Policy Gradients Revisited
34:54学员 7、Lecture 5 - Natural Policy Gradients, TRPO, PPO
41:00学员 8、Lecture 6 - Nuts and Bolts of Deep RL Experimentation
44:44学员 9、Lecture 7 SVG, DDPG, and Stochastic Computation Graphs (John Schulman)
00:00学员 10、Lecture 8 Derivative Free Methods
54:31学员 11、Lecture 9 Model-based Reinforcement Learning
01:03:28学员 12、Lecture 10A Utlities
23:43学员 13、Lecture 10B Inverse Reinforcement Learning
41:07学员 14、TAs Research Overview
29:07学员 15、Frontiers Lecture II - Recent Advances, Frontiers and Future of Deep RL
01:04:28