|
--------------------------------------------------------二面-------------------------------------------------------------
一,介绍自己及项目:主要介绍自己在TensorLayer框架的制作,贡献,太细节了,导致面试官说本来要问我的都说了
二.基础考察:
1.你知道感知野吗?什么作用?你知道卷积的作用吗?你用过池化层吗?有哪些?
当时一脸懵逼,感知野是神马啊?最后再次确认了感知野其实就是在多个kernel做卷积的时候的窗口区域,就是3个3*3等于1个7*7的感知大小。
卷积的作用是提取特征,前面的卷积提取类似于人眼能识别的初步特征,后面的卷积是能够提取更加不容易发现但是真实存在的特征。
Pooling 用过,max pooling, average pooling, global average pooling。再问这个两个分别有什么用?
max pooling我蠢到说提取最有特征的特征,其实就是最具有代表性的特征;average pooling提取的是比较general 的特征;global average pooling用来分类的,因为后面网络的加深,full connected layer参数太多了,不容易训练,为了快速准确得到结果,采用global average pooling,没有参数,但是得到的分类效果跟FC差不多。
2. 讲到这里有点尬,你说你做过爬虫,自己写的还是用的框架?
用的框架,现在基本不用java我觉得我还是要补一补,差不多都忘光了,我所做的就是用Xpath找到爬取的元素,然后保存下来,再用脚本转成待用Jason
3.你机器学习的,知道sequence to sequence吗?
我第一反应是RNN,我说RNN没了解,主要我只做深度学习CNN相关工作,大佬呵呵一笑,说你要补补基础啊
4. 在线编程:
给个题目你写写吧,不用math中的取平方差方法,判断一个自然数是不是可以开方(时间复杂度尽量低)?
妈耶,第一反应二分查找
一上去尬了写了一个boolean 然后删除,搞了个def开始写函数
最后问了2个问题,他又问了我2个问题:1,我们组(这次是个P8大佬)在杭州,你工作地点介不介意?(我多说了几句话,开了地图炮,真的内心话)2,你作为tensorlayer的contributor,对标Kreas,优势在哪里?他说Kears底层支持好多库caffe2, Pytorch,等等,我说TensorLayer出发点不一样,怎么样比比了一通,反正我觉得没逻辑~感觉自己凉了~因为面试官给我回馈就是你要拓展你的机器学习知识面啊啊啊,我一个搞机器学习被吐槽这样。。。(还好过了一天内推人说过了,准备3面)
一面传送门:https://www.nowcoder.com/discuss/92851
转载自:https://www.nowcoder.com/discuss/93959 |
|