[1] Yao J, Xie Y, Tan J, et al. No-reference video quality assessment using statistical features along temporal trajectory[J]. Procedia Engineering, 2012, 29: 947-951.
[2] Manasa K, KVSNL M P, Channappayya S S. A perceptually motivated no-reference video quality assessment algorithm for packet loss artifacts[C]//2014 Sixth International Workshop on Quality of Multimedia Experience (QoMEX). IEEE, 2014: 67-68.
[3] Saad M A, Bovik A C, Charrier C. Blind prediction of natural video quality[J]. IEEE Transactions on Image Processing, 2014, 23(3): 1352-1365.
[4] Xia X, Lu Z, Wang L, et al. Blind video quality assessment using natural video spatio-temporal statistics[C]//2014 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). IEEE, 2014: 1-6.
[5] Xu J, Ye P, Liu Y, et al. No-reference video quality assessment via feature learning[C]//2014 IEEE international conference on image processing (ICIP). IEEE, 2014: 491-495.
[6] Zhu K, Li C, Asari V, et al. No-reference video quality assessment based on artifact measurement and statistical analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2014, 25(4): 533-546.
[7] Li X, Guo Q, Lu X. Spatiotemporal statistics for video quality assessment[J]. IEEE Transactions on Image Processing, 2016, 25(7): 3329-3342.
[8] Li Y, Po L M, Cheung C H, et al. No-reference video quality assessment with 3D shearlet transform and convolutional neural networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 26(6): 1044-1057.
[9] Manasa K, Channappayya S S. An optical flow-based no-reference video quality assessment algorithm[C]//2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016: 2400-2404.
[10] Mittal A, Saad M A, Bovik A C. A completely blind video integrity oracle[J]. IEEE Transactions on Image Processing, 2015, 25(1): 289-300.
[11] Ghadiyaram D, Chen C, Inguva S, et al. A no-reference video quality predictor for compression and scaling artifacts[C]//2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017: 3445-3449.
[12] Wang C, Su L, Huang Q. CNN-MR for no reference video quality assessment[C]//2017 4th International Conference on Information Science and Control Engineering (ICISCE). IEEE, 2017: 224-228.
[13] Yang J, Wang H, Lu W, et al. A no-reference optical flow-based quality evaluator for stereoscopic videos in curvelet domain[J]. Information Sciences, 2017, 414: 133-146.
[14] Ahn S, Lee S. Deep blind video quality assessment based on temporal human perception[C]//2018 25th IEEE International Conference on Image Processing (ICIP). IEEE, 2018: 619-623.
[15] Göring S, Skowronek J, Raake A. DeViQ–A deep no reference video quality model[J]. Electronic Imaging, 2018, 2018(14): 1-6.
[16] Jiang G, Liu S, Yu M, et al. No reference stereo video quality assessment based on motion feature in tensor decomposition domain[J]. Journal of Visual Communication and Image Representation, 2018, 50: 247-262.
[17] Liu W, Duanmu Z, Wang Z. End-to-End Blind Quality Assessment of Compressed Videos Using Deep Neural Networks[C]//ACM Multimedia. 2018: 546-554.
[18] Zhang Y, Gao X, He L, et al. Blind video quality assessment with weakly supervised learning and resampling strategy[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018.
[19] Singh R, Aggarwal N. A distortion-agnostic video quality metric based on multi-scale spatio-temporal structural information[J]. Signal Processing: Image Communication, 2019, 74: 299-308.
[20] Wang Y, Shuai Y, Zhu Y, et al. Jointly learning perceptually heterogeneous features for blind 3D video quality assessment[J]. Neurocomputing, 2019, 332: 298-304.
[21] Yang J, Zhu Y, Ma C, et al. Stereoscopic video quality assessment based on 3D convolutional neural networks[J]. Neurocomputing, 2018, 309: 83-93.
[22] Kim W, Kim J, Ahn S, et al. Deep video quality assessor: From spatio-temporal visual sensitivity to a convolutional neural aggregation network[C]//Proceedings of the European Conference on Computer Vision (ECCV). 2018: 219-234.
[23] Zhang Y, Gao X, He L, et al. Objective Video Quality Assessment Combining Transfer Learning With CNN[J]. IEEE transactions on neural networks and learning systems, 2019.