shaoheshaohe 发表于 2020-5-14 08:52:18

Pytorch:BatchNorm1d、BatchNorm2d、BatchNorm3d

1.nn.BatchNorm1d(num_features)
            1.对小批量(mini-batch)的2d或3d输入进行批标准化(Batch Normalization)操作
            2.num_features:
                  来自期望输入的特征数,该期望输入的大小为'batch_size x num_features '
                  意思即输入大小的形状可以是'batch_size x num_features' 和 'batch_size x num_features x width' 都可以。
                  (输入输出相同)
                  输入Shape:(N, C)或者(N, C, L)
                  输出Shape:(N, C)或者(N,C,L)

            eps:为保证数值稳定性(分母不能趋近或取0),给分母加上的值。默认为1e-5。
            momentum:动态均值和动态方差所使用的动量。默认为0.1。
            affine:一个布尔值,当设为true,给该层添加可学习的仿射变换参数。
            3.在每一个小批量(mini-batch)数据中,计算输入各个维度的均值和标准差。gamma与beta是可学习的大小为C的参数向量(C为输入大小)
            在训练时,该层计算每次输入的均值与方差,并进行移动平均。移动平均默认的动量值为0.1。
            在验证时,训练求得的均值/方差将用于标准化验证数据。
            4.例子
                  >>> # With Learnable Parameters
                  >>> m = nn.BatchNorm1d(100) #num_features指的是randn(20, 100)中(N, C)的第二维C
                  >>> # Without Learnable Parameters
                  >>> m = nn.BatchNorm1d(100, affine=False)
                  >>> input = autograd.Variable(torch.randn(20, 100)) #输入Shape:(N, C)
                  >>> output = m(input)#输出Shape:(N, C)

      2.nn.BatchNorm2d(num_features)
            1.对小批量(mini-batch)3d数据组成的4d输入进行批标准化(Batch Normalization)操作
            2.num_features:
                  来自期望输入的特征数,该期望输入的大小为'batch_size x num_features x height x width'
                  (输入输出相同)
                        输入Shape:(N, C,H, W)
                        输出Shape:(N, C, H, W)
            eps: 为保证数值稳定性(分母不能趋近或取0),给分母加上的值。默认为1e-5。
            momentum: 动态均值和动态方差所使用的动量。默认为0.1。
            affine: 一个布尔值,当设为true,给该层添加可学习的仿射变换参数。
            3.在每一个小批量(mini-batch)数据中,计算输入各个维度的均值和标准差。gamma与beta是可学习的大小为C的参数向量(C为输入大小)
            在训练时,该层计算每次输入的均值与方差,并进行移动平均。移动平均默认的动量值为0.1。
            在验证时,训练求得的均值/方差将用于标准化验证数据。
            4.例子
                >>> # With Learnable Parameters
                >>> m = nn.BatchNorm2d(100) #num_features指的是randn(20, 100, 35, 45)中(N, C,H, W)的第二维C
                >>> # Without Learnable Parameters
                >>> m = nn.BatchNorm2d(100, affine=False)
                >>> input = autograd.Variable(torch.randn(20, 100, 35, 45))#输入Shape:(N, C,H, W)
                >>> output = m(input)

      3.nn.BatchNorm3d(num_features)
            1.对小批量(mini-batch)4d数据组成的5d输入进行批标准化(Batch Normalization)操作
            2.num_features:
                  来自期望输入的特征数,该期望输入的大小为'batch_size x num_features depth x height x width'
                  (输入输出相同)
                     输入Shape:(N, C,D, H, W)
                     输出Shape:(N, C, D, H, W)

            eps: 为保证数值稳定性(分母不能趋近或取0),给分母加上的值。默认为1e-5。
            momentum: 动态均值和动态方差所使用的动量。默认为0.1。
            affine: 一个布尔值,当设为true,给该层添加可学习的仿射变换参数。

            3.在每一个小批量(mini-batch)数据中,计算输入各个维度的均值和标准差。gamma与beta是可学习的大小为C的参数向量(C为输入大小)
            在训练时,该层计算每次输入的均值与方差,并进行移动平均。移动平均默认的动量值为0.1。
            在验证时,训练求得的均值/方差将用于标准化验证数据。
            4.例子
                >>> # With Learnable Parameters
                >>> m = nn.BatchNorm3d(100)#num_features指的是randn(20, 100, 35, 45, 10)中(N, C, D, H, W)的第二维C
                >>> # Without Learnable Parameters
                >>> m = nn.BatchNorm3d(100, affine=False)#num_features指的是randn(20, 100, 35, 45, 10)中(N, C, D, H, W)的第二维C
                >>> input = autograd.Variable(torch.randn(20, 100, 35, 45, 10)) #输入Shape:(N, C, D, H, W)
                >>> output = m(input)



shaoheshaohe 发表于 2020-5-14 08:52:25

https://blog.csdn.net/zimiao552147572/java/article/details/105604193
页: [1]
查看完整版本: Pytorch:BatchNorm1d、BatchNorm2d、BatchNorm3d